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Abstract— In this paper we present two real-time methods
for estimating surface normals from organized point cloud
data. The proposed algorithms use integral images to perform
highly efficient border- and depth-dependent smoothing and
covariance estimation. We show that this approach makes it
possible to obtain robust surface normals from large point
clouds at high frame rates and therefore, can be used in real-
time computer vision algorithms that make use of Kinect-like
data.

I. INTRODUCTION

The recent development of a new class of affordable

depth sensors, like the Kinect, has been of great interest

to the robotics community. These new sensors are able

to simultaneously capture high-resolution color and depth

images at high frame rates. When the camera’s intrinsic

calibration parameters are known, these depth images can

be converted into organized point clouds (i.e., clouds of 3D

points sampled from a regular 2D grid), which are useful in

a wide array of important robotics applications, such as 3D

registration and object recognition.

Besides depth, surface normal orientation is one of the

most discrimative information that can be obtained from

point clouds and is therefore optimally suited to be used

in object detection approaches. However, state-of-the-art

normal estimation algorithms are often slow when operat-

ing on large and/or noisy point clouds. Thus, for robotics

applications that require real-time performance, fast normal

estimation is essential.

In this work, we present two algorithms for estimating

surface normals in organized point clouds. Both methods

employ an adaptive window size to analyze local surfaces,

which allows us to effectively handle depth-dependent sen-

sor noise and to avoid common artifacts caused by depth

discontinuities. Typically, multi-scale algorithms come with

increased computational costs, especially when large window

sizes are used; however, because of the point clouds’ inherent

grid structure, we are able to use integral images to perform

the necessary computation in constant time, independent of

the window size.

II. RELATED WORK

Normal estimation methods can be divided into two dif-

ferent categories: averaging and optimization-based meth-
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Fig. 1. (a) PR2 robot with a Kinect depth sensor mounted on its head. (b)
Color-coded surface normals estimated using the proposed approaches.

ods [1]. Averaging methods [1], [2], [3], [4], [5], [6] compute

the normals at a certain point as a (weighted) average of

point data within a certain neighborhood. Examples for these

neighboring points can be the nearest neighbors, all points

within a certain region of interest, or points that are in some

other way connected to the point of interest, e.g. neighbors

in a triangulated mesh. The weights, which define how

strong the influence of particular information taken from the

local neighborhood is, can be computed in different ways.

Common ways of computing the weighted mean include

weighting all points equally [2], weighting by angle [5],

weighting by sine and edge length reciprocals [4], weighting

by areas of adjacent triangles [4], weighting by edge length

reciprocals [4], and weighting by square root of edge length

reciprocals [4]. In [6], Holz et al. presented how integral

images can be used in the efficient averaging for normal

estimation process. For a more detailed overview of methods

based on averaging please refer to [3].

Optimization-based methods usually try to fit geometric

primitives, e.g. a plane, into the local neighborhood of

the point of interest or penalize other criteria, e.g. the

angle between the estimated normal vector and tangential

vectors. If the optimization is formulated as a linear problem

in matrix-vector notation, the desired minimization can be

directly obtained from the result of a singular value decom-

position (SVD) or a principal component analysis (PCA) [1].

Amongst others, existing methods try to fit planes [7], [8],

[9], [10], maximize the angle between the tangential vectors

and the normal vector [11], or try to estimate not only the

orientation of the tangent plane but also the curvature [12],

[13], [14]. A more detailed comparison of these methods can

be found in [1].
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III. NORMAL ESTIMATION

In the following we will describe the different steps we

use to compute surface normals from organized point clouds

based on integral images. First, we will describe the basic

principle of integral images. Then we introduce the pre-

processing step used to estimate the neighborhood size for

each pixel. Finally, we introduce two different approaches for

computing surface normals: a method based on averaging as

well as an optimization-based method. Both techniques make

use of integral images to improve processing speed. The first

approach (see Sec. III-C) uses a single integral image for

depth and border aware smoothing of the depth map, while

the second approach (see Sec. III-D) computes covariance

matrices using integral images and obtains the normals from

the covariance matrices.

A. Integral Images

An integral image IO corresponding to an image O makes

it possible to compute the sum of all values of O within

a certain rectangular region R(ms,ns)→(me,ne) (see Fig. 2)

by accessing only four data elements in memory. This not

only makes the computation very efficient but also makes the

computational costs independent of the size of the rectangle.

We will use this property later for smoothing since it allows

us to use smoothing areas which differ in size for every point.

To be able to compute the area sum of an image O each pixel

element (m,n)⊤ in the integral image IO is defined as the

sum of all elements which are inside of the rectangular area

between O(0, 0) and O(m,n):

IO(m,n) =

m
∑

i=0

n
∑

j=0

O(i, j). (1)

This can be efficiently computed iteratively as

IO(m,n) = O(m,n) (2)

+ IO(m− 1, n)

+ IO(m,n− 1)

− IO(m− 1, n− 1),

where IO(u, v) = 0 if (u, v) is not in the domain of O.

Therefore, a single pass over the input image is sufficient

to compute the corresponding integral image. The average

value within a region can then be computed as

S(IO,m, n, r) =
1

4r2
· ( IO(m+ r, n+ r) (3)

− IO(m− r, n+ r)

− IO(m+ r, n− r)

+ IO(m− r, n− r) ),

where (m,n)⊤ defines the center and r the inner radius of

the rectangular region.

B. Smoothing

Data obtained from a 3D sensor typically contains noise.

The standard approach for reducing the effect of noise is to

use smoothing. A big advantage of using integral images for
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Fig. 3. Visualization of depth changes (blue circles) depending on the depth
at which they occur. The minimal depth changes are fitted by a parabola
(red line).

averaging is hereby that its processing speed is independent

of the size of the smoothing area since we always need the

same amount of memory accesses. Therefore, we can use

varying smoothing sizes depending on the characteristics of

the considered point and its neighborhood.

In the following we will use two different indicators for

estimating the size of the smoothing area for a certain point

of interest. The first indicator is the depth of the point of

interest, since the noise usually depends on the depth of the

perceived data, i.e. if data is acquired at a far distance then it

has a worse signal-to-noise ratio than data that is acquired at

close distances. However, if the size of the smoothing area is

determined based only on the depth of the point of interest

we would also smooth over object borders. This would merge

information across two distinct surfaces and lead to incorrect

normal estimates. In order to prevent this, we make the size

of the smoothing area also dependent on large depth changes

which are likely to be object borders. Both indicators are then

combined into a single Smoothing Area Map which defines

the smoothing area for each point of the organized point

cloud.

1) Depth-Dependent Smoothing Area Map: Fig. 3 shows

the minimal depth change (blue circles) that can occure

at a specific depth. As shown, the value gets bigger with

increasing depth. The red curve shows that the relationship

between depth and minimum depth change can be described

using the function

fDC(d) = α · d2, (4)

where d is a depth value. For the device used in our exper-

iments we estimated α = 0.0028. Based on this observation

it is clear that the smoothing area has to get bigger with

increasing depth in a similar way. Therefore, we define

the response of the depth-dependent Smoothing Area Map

B(m,n):

B(m,n) = β · fDC (D (m,n)) , (5)
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Fig. 2. (a) The sum of a 2D region can be efficiently computed from an integral image by accessing only four data elements in memory which correspond
to the for corners of the rectangular region. (b) Estimating a surface normal as cross-product of the vectors between the horizontal and vertical neighbors
of the point of interest.

where β is a user specified value to control the increase of

the smoothing area size and D(m,n) is the depth value at

the image point (m,n)⊤.

2) Depth Change Indication Map: The simplest solution

for computing the Depth Change Indication Map would be

to apply a threshold on the first derivative of the depth map.

However, as we just saw, the minimum possible depth change

depends on the depth and therefore, a simple threshold would

only be valid at a specific depth. Instead, we create a binary

Depth Change Indication Map C by using a depth change

detection threshold tDC(d) which is dependent on the actual

distance:

tDC(d) = γ · fDC (d) , (6)

where γ is a scale factor which defines how sensitive the

depth change detection will be. Assuming that δDx(m,n) =
D(m + 1, n) − D(m,n) and δDy(m,n) = D(m,n +
1) − D(m,n), the depth change indication map C is then

computed as

C(m,n) =















1

{

if ‖δDx(m,n)‖ ≥ tDC(D(m,n))
or ‖δDy(m,n)‖ ≥ tDC(D(m,n))

0 otherwise.
(7)

3) Final Smoothing Area Map: Using the depth-

dependent Smoothing Area Map B and the Depth Change

Indication Map C we then compute the final Smoothing Area

Map R. For this, we first compute the distance transform

map [15] corresponding to C, which gives us for each

point (m,n)⊤ the 2D distance to the next depth change as

T (m,n). R is then computed as

R(m,n) = min(B(m,n),
T (m,n)√

2
), (8)

where min(a, b) returns the minimum of a and b. The

distance values T (m,n) are divided by the square root of 2
since we do not use circular but rectangular smoothing areas.

C. Normal Estimation based on Smoothed Depth Changes

A standard way of estimating the surface normal ~np at

a point p at image location (m,n)⊤ is to compute the 3D

vector ~vp,h between the left and right neighbor as well as the

vector ~vp,v between the upper and lower neighbor of p and

then computing the cross-product between these two vectors:

~np = ~vp,h × ~vp,v (9)

Due to the noise characteristics of depth sensors, e.g. the

Kinect, this would lead to noisy normals. Smoothing the

depth data before computing the normals is a common

approach to reduce the influence of noise. However, smooth-

ing with a fixed window size also smoothes over object

boundaries, which leads to undesired artifacts. Therefore,

we use the smoothing area map described in Sec. III-

B.3 to prevent from smoothing over object boundaries and

efficiently compute the vectors ~vp,h and ~vp,v as:

~vp,h,x =
Px(m+ r, n)− Px(m− r, n)

2
, (10)

~vp,h,y =
Py(m+ r, n)− Py(m− r, n)

2
, (11)

~vp,h,z =
S(IPz

,m+ 1, n, r − 1)

2
(12)

−S(IPz
,m− 1, n, r − 1)

2

~vp,v,x =
Px(m,n+ r)− Px(m,n− r)

2
, (13)

~vp,v,y =
Py(m,n+ r)− Py(m,n− r)

2
, (14)

~vp,v,z =
S(IPz

,m, n+ 1, r − 1)

2
(15)

−S(IPz
,m, n− 1, r − 1)

2
,

where Px, Py , and Pz are two-dimensional maps storing the

x-, y-, and z-coordinates of the organized point cloud, IPz
is

the integral image of the z-components of the point cloud,

and r = R(m,n). The normals are then computed using

Eq. (9).

D. Normal Estimation based on Covariance Matrices

Our second method is an optimization-based method,

where we estimate surface normals by trying to fit a plane

2686



into the local neighborhood Np of the point of interest p. This

is done by computing the eigenvectors of the corresponding

covariance matrix Cp. The size of the neighborhood is esti-

mated using the smoothing area map as described in Sec. III-

B.3. Neighboring points are commonly found by performing

a nearest neighbor search or selecting all points within a

certain distance. This, however, is an expensive operation

and therefore, we make use of the method described by

Porikli and Tuzel [16] for efficient computation of covariance

matrices using integral images. For this we have to compute

nine integral images, where three of them, namely IPx
,

IPy
, and IPz

, are for the x-, y- and z-coordinates of the

points of the point cloud and the remaining six are for all

possible combinations of the point-coordinates: IPxx
, IPxy

,

IPxz
, IPyy

, IPyz
, IPzz

, where IPab
is the element-wise

multiplication of IPa
and IPb

. The covariance matrix Cp
for a point p at (m,n)⊤ can then be computed as:

Cp =





cxx cxy cxz
cyx cyy cyz
czx czy czz



−





cx
cy
cz









cx
cy
cz





⊤

, (16)

with

cxx = S(IPxx
,m, n,R(m,n)), (17)

cxy = cyx = S(IPxy
,m, n,R(m,n)), (18)

cxz = czx = S(IPxz
,m, n,R(m,n)), (19)

cyy = S(IPyy
,m, n,R(m,n)), (20)

cyz = czy = S(IPyz
,m, n,R(m,n)), (21)

czz = S(IPzz
,m, n,R(m,n)), (22)

and

cx = S(IPx
,m, n,R(m,n)), (23)

cy = S(IPy
,m, n,R(m,n)), (24)

cz = S(IPz
,m, n,R(m,n)). (25)

Finally, we compute the normal ~np from the covariance

matrix Cp as the eigenvector which corresponds to the

smallest eigenvalue. Although this method is computationally

more expensive than the method described in Sec. III-C it has

the advantage that the eigenvalues of the covariance matrix

can be directly used to get information about the planarity

of the neighborhood around the point p at image location

(m,n)⊤. This can be used for plane fitting as well as efficient

edge or corner detection.

IV. RESULTS

In this section we show how the presented surface normal

estimation methods perform under various conditions and

compare them to a state-of-the-art kNN-based implementa-

tion [17]. All experiments are performed on a standard laptop

with a 2.26 GHz Intel(R) Core(TM)2 Quad CPU and 4 GB

of RAM, where only one core is used for the computations.

An open-source implementation of our approach is available

in the Point Cloud Library (PCL)1 [18].
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Fig. 4. Processing time of different normal estimation methods with respect
to the size of the smoothing area. Note that the processing time is given in
log-scale.
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Fig. 5. Normal estimation error for different normal estimation methods
with respect to the size of the smoothing area.

A. Processing Speed

Fig. 4 shows the processing time with respect to the

number of points considered for smoothing for the ap-

proaches introduced in Sec. III-C (SDC), Sec. III-D (CM),

and a state-of-the-art kNN-based approach (kNN) of Rusu et

al. [17], which uses the k-nearest neighboring points for

normal estimation. While the necessary processing time is

constant for our approaches the processing time of et al. [17]

increases with the number of considered neighboring points.

The experiment is done using synthetic data by rendering a

mesh model into a depth map of size 640×480 which is then

converted into a point cloud of 307200 points. The average

processing time for CM is approximately 151 ms and for

SDC approximately 28 ms. Therefore, by using the SDC

method we can obtain surface normals for full-resolution

Kinect-data at around 35 Hz.

B. Normal Estimation Error

In Fig. 5 we compare different normal estimation methods

with respect to the angular error between the ground truth

1http://www.pointclouds.org

2687



Fig. 6. Surface normals estimated from a partial view of the Stanford
bunny.

Fig. 7. Visualization of the difference between the normals estimated using
our covariance matrix approach and the approach of [17]. For every point in
the point cloud we visualize the dot-product between the normals estimated
with the different methods, where blue color corresponds to a small and red
corresponds to a large difference between the normals.

normal vectors and the estimated ones. As in Sec. IV-A this

experiment is done using synthetic data without added noise.

While the proposed methods (CM, SDC) behave similarly

for different numbers of considered neighbors, the error

obtained by the kNN-based approach increases faster when

larger neighborhoods are used. An explanation for this is that

the kNN-based approach uses a fixed number of neighbors

independent of the presence of possible object borders. The

proposed methods, on the other hand, adapt the number of

considered points according to the specific depth as described

in Sec. III-B.3.

Fig. 8 addresses the sensitivity to noise. As we see,

our approach based on smoothed depth changes (SDC)

has significantly better abilities to handle noise than our

approach based on covariance matrices (CM) or the kNN-

based approach, which both use the covariance matrix to

estimate surface normals.

C. Qualitative Results

In Fig. 9 we show qualitative results of three different

scenes. The first row shows the data which we get from

a Kinect sensor, that is a color image and a depth map.

The second row shows resulting normals that we get without

depth-dependent smoothing (left) and with depth-dependent

smoothing (right). The normals are color-coded, where each

vector component is represented by a different color channel.

It is easily visible that the depth-dependent smoothing helps

to dramatically reduce the noise in the resulting normal

vectors. Fig. 6 shows surface normals estimated from a point

cloud of a partial view of the Stanford bunny. In Fig. 7 we

visualize the difference between the normals obtained using

the method of [17] and our covariance matrix based method.

V. CONCLUSION

In this paper we presented new methods for fast and

robust estimation of surface normals from organized point

cloud data. The use of integral images makes it possible to

adapt the considered neighborhood size according to depth

and object borders without any additional cost in terms of

processing speed. We demonstrated that this way of normal

estimation enables dense normal estimation at high frame

rates and therefore, makes it possible to integrate surface

normal information into vision based applications which

need to run at a reasonable speed. However, the proposed

approach shows two weaknesses: the lack of ability to

compute normals for points very close to a depth change and

the fact that it smoothes over edges where no depth change

is present. Although not considered within this paper, the

first problem can be easily addressed by using a different

normal estimation method for close to a depth change. For

the edge-smoothing problem, a two-pass approach can be

applied where in the second pass areas with high variations

in surface normal orientations are treated as object borders

similar to high changes in depth.
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